Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Efficient single instance segmentation is critical for unlocking features in on-the-fly mobile imaging applications, such as photo capture and editing. Existing mobile solutions often restrict segmentation to portraits or salient objects due to computational constraints. Recent advancements like the Segment Anything Model improve accuracy but remain computationally expensive for mobile, because it processes the entire image with heavy transformer backbones. To address this, we propose TraceNet, a one-click-driven single instance segmentation model. TraceNet segments a user-specified instance by back-tracing the receptive field of a ConvNet backbone, focusing computations on relevant regions and reducing inference cost and memory usage during mobile inference. Starting from user needs in real mobile applications, we define efficient single-instance segmentation tasks and introduce two novel metrics to evaluate both accuracy and robustness to low-quality input clicks. Extensive evaluations on the MS-COCO and LVIS datasets highlight TraceNet’s ability to generate high-quality instance masks efficiently and accurately while demonstrating robustness to imperfect user inputs.more » « lessFree, publicly-accessible full text available August 5, 2026
- 
            Free, publicly-accessible full text available November 4, 2025
- 
            360-degree video is becoming an integral part of our content consumption through both video on demand and live broadcast services. However, live broadcast is still challenging due to the huge network bandwidth cost if all 360-degree views are delivered to a large viewer population over diverse networks. In this paper, we present 360BroadView, a viewer management approach to viewport prediction in 360-degree video live broadcast. We make some highbandwidth network viewers be leading viewers to help the others (lagging viewers) predict viewports during 360-degree video viewing and save bandwidth. Our viewer management maintains the leading viewer population despite viewer churns during live broadcast, so that the system keeps functioning properly. Our evaluation shows that 360BroadView maintains the leading viewer population at a minimal yet necessary level for 97 percent of the time.more » « less
- 
            Immersive virtual tours based on 360-degree cameras, showing famous outdoor scenery, are becoming more and more desirable due to travel costs, pandemics and other constraints. To feel immersive, a user must receive the view accurately corresponding to her position and orientation in the virtual space when she moves inside, and this requires cameras’ orientations to be known. Outdoor tour contexts have numerous, ultra-sparse cameras deployed across a wide area, making camera pose estimation challenging. As a result, pose estimation techniques like SLAM, which require mobile or dense cameras, are not applicable. In this paper we present a novel strategy called 360ViewPET, which automatically estimates the relative poses of two stationary, ultra-sparse (15 meters apart) 360-degree cameras using one equirectangular image taken by each camera. Our experiments show that it achieves accurate pose estimation, with a mean error as low as 0.9 degreemore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
